ENSIBS - IRDL

Tutoriel : Affichage des efforts

Affichage des efforts internes et externes sur ¼ d'une plaque soumise à une pression

Gaëtan ROMAN 19/05/2017

Sommaire

I)	Introduction :	3
II)	Pression ponctuelle :	3
a)	Création de la plaque :	3
b)	Calcul :	4
c)	¼ de la plaque:	. 10
d)	Plaque entière :	. 11
e)	Affichage des efforts :	. 12
III)	Torseurs de réactions :	. 14
a)	Obtention des torseurs de réactions	. 14
b)	Vérification des valeurs des torseurs	. 16
IV)	Conclusion :	.21

I) Introduction :

ut de Recherche Dupuy de Lôme

Ce document à pour but d'expliquer comment afficher les efforts internes et externes d'un quart de plaque soumise à des efforts externes ponctuels. Nous utiliserons pour cela un effort ponctuel et des conditions de blocages permettant de simuler une plaque entière dont l'avantage est un gain de temps au niveau du calcul. Il sera possible de visualiser le déplacement du ¼ de la plaque et celle de la plaque entière mais aussi les efforts internes et externes.

Ci-joint le dossier permettant de vous aider, expliqué en fin du tutoriel.

II) Chargement ponctuelle :

Dans cette partie nous allons expliquer comment visualiser le déplacement du ¼ de la plaque mais aussi celle de la plaque entière soumise toutes deux à un chargement ponctuel.

a) Création de la plaque :

Sous stamm, lorsque vous l'exécutez dans un terminal, il est possible de créer des maillages simples comme des pièces cylindriques, des poutres, des plaques etc... Nous allons voir la procédure à suivre pour créer notre plaque de dimension : 100x100x2 (mm) voir figure 1.

On utilise	<u>des éléments 3</u> D
type d'elements : (1D, 2D, 3D) ? 3D	counage de type brique
choix lu: 3D	soupuse de type bridde
type de decoupage :	and the second
brique (reponse b) ? b	Une interpolation quadratique
chaix de l'internelation :	complet : très bonne précision
lipeaire (reporse li) ?	
quadratique complet (reponse qc) ? qc	bouries resultats
calcul de la position des noeuds :	Le calcul de la position des
de maniere exacte	(reponse e) ?
de maniere aleatoire autour d'une position exacte	(reponse a) ? / nœuds se fera de manière
aleatoire uniquement sur les noeuds internes	(reponse t) ? e
type de geometrie :	
prisme rectangulaire (reponse pr) ?	
cylindre creux (reponse cyl) ?	
parallelogramme eleve (reponse prl) ?	
portion de cylindre (reponse pcy) ?	
plaque en helice (reponse phe) ?	
portion de dome hemispherique (reponse p_dome) ?	
anneau (reponse ann) ?	Notre plague est un prisme
dome hemispherique complet (reponse dome) ? pr	restore viloire
done henropher eque conprete (reponse done) : pr	rectangulaire
dimension du prisme rectangulaire: longueur x ? 100	
largeur ? 100	Dimension de notre plaque
hauteur ? 2	
nombre d'element(s) dans la longueur ? 5	Nombro d'álámont do notro
dans la largeur ? 5	
dans la nauteur ? 1	plaque
nombre de point d'interpolation standard 8 ? (rep o ou n)	n
nombre de pt possible : 8 27 64 : choix ? 27 ┥	Dn utilise 27 points d'intégrations
nom du fichier de sortie ? : plaque_quad	
nom lue : plaque quad	lom du fichier contenant le
un autre maillage ? (rep o ou n) n	abillago on cortia
	Talliage ell'sol lle
TIN STAMM	

Figure 1: Plaque sous stamm

Sous hz_visuMail.pl il est alors possible de visualiser le maillage obtenu avec la commande suivante « *hz_visuMail.pl nomfichier.her* ». Nous obtenons cela (figure 2) :

Figure 2: Maillage de la plaque

On observe bien qu'il y a 10 éléments selon la longueur et la largeur ainsi que seulement 2 selon sa hauteur. Il est possible de visualiser les nœuds, les éléments de notre maillage.

b) Calcul:

Nous allons expliquer la mise en donnée pour la mise en place de conditions de symétries pour ¼ de plaque en appui et l'ajout d'un effort de type force ponctuel. Le principe est le suivant (figure 3):

- Blocage de certains nœuds (voir figure 3)
- Application de l'effort ponctuel sur tous les nœuds de dessus

Explication de la mise en donnée du fichier plaque.info :

definition de la dimension de l'espace de travail
dimension 3
<pre># # definition facultative du niveau d'impression (entre 0 et 10) #</pre>
<pre>niveau_commentaire 3 Niveau de commentaire variable par défaut 3</pre>
<pre># definition du type de calcul #</pre>
#=====================================
choix_materiaux #
Elements Nom Materiau
E_tout acier Définition du nom du matériau materiaux #
Nom Materiau Type loi
acierISOELAS#loi de comportement isoelastique 3DUtilisation d'une loi Isoélastique 3D# module d'young :coefficient de poisson(simple loi de Hooke, pour des éléments210000 0.3Image: coefficient de poissonvolumiques)
fin def des lois de comportement -
<pre># divers stockages (1) masse_volumique ## E_tout 1</pre>
charges ## N_haut PONCTUELLE 0 0 -1.e1 Ajout de la force ponctuelle pour simuler une pression (la force sera appliquée sur tous les nœuds de la référence N_haut)
blocages ##

<pre># # nom du maillage Ref noeud Blo #</pre>	cages	
<pre>" " " " " " " " " " " " " " " " " " "</pre>	Tous les nœuds de la référence N_bas_droit et N_bas_arriere sont bloqu en UZ. Les nœuds de la référence N_gauche sont bloqués et UY et la référence N_avar selon UY.	
SAUVEGARDE 1 DELTAt 0.1	s de temps Défini le temps de fin du calcul. NB : Il y aura 10 incréments de cha	irge
para_affichage # # # PARAMETRE VALEUR #	Permet de borner le pas de f Ainsi celui-ci ne peut pas au	temps. gmenter
<pre>FREQUENCE_SORTIE_FIL_DU_CALCUL 1 # resultats pas_de_sortie_finale_ COPIE 0</pre>		
<pre>#</pre>		

En sortie du fichier.info avec le paramètre « *avec plus visualisation* » on récupère la déformée de la poutre mais aussi les forces internes et externes. Ainsi sous gmsh nous pourrons observer sa déformée et le sens des efforts. Créons ensemble le fichier.Cvisu permettant d'observer ses résultats sous Gmsh :

A la fin du calcul nous obtenons cela :

maillage initiale:	mi	
isovaleurs:	iso	
deformee:	de	
choix numeros d'increment:	cni	
choix du ou des maillages a visualiser:	CMV	
visualisation :	visu	
arret de la visualisation interactive:	f	
reponse ? mi	tial. Peut-être utile pour	⁻ créer des
éléments biellettes à conditions d'avoir > preparation de la visualisation des coordonnees parametre par defaut ? : resultat brut du calcul ele pas d'homotheties sur les c sortie des references dans	commeréférences des initiales ments finis , coordonnees initi un seul fichier.	arrêtes e <mark>tc</mark> ales ,
> (rep 'o') pour accepter ces parametres sinon au	itre	
reponse ? o		
maillage initiale:	mi	
isovaleurs:	iso	
deformee:	de	
choix numeros d'increment:	cni	
choix du ou des maillages a visualiser:	CMV	
visualisation :	visu	
arret de la visualisation interactive:	f	
reponse ? de 🛛 🛶 👘 Permet de récupérer la déformée de no	otre quart de plaque	
such propagation do la vigualigation dos deferments		
parametre par defaut ? : pas de limites d'alerte sur	· les deplacement	s, (
reponse ? o 🚽 On accepte par oui		
maillage initiale:	mi	
isovaleurs:	iso	
deformee.	de	
choix numeros d'increment.	cni	
choix du ou des maillages a visualiser	CMV	
visualisation ·	visu	
arret de la visualisation interactive:	f	
reponse ? iso		
Permet a obtenir nos isovaleurs		

---- isovaleurs ----(0 ou f ou fin) fin modif (1) ou (de) parametres par defaut: (2) ou (to) toutes les isovaleurs (3) parametres generaux pour la sortie (4) ddl naturellement defini aux noeuds (5) grandeurs scalaires venant des pts integ (6) grandeurs tensoriel venant des pts integ (7) grandeurs particulieres venant des pts integ (8) choix de l'ancien format gmsh (faux par defaut) (9) ddl etendu aux noeuds (10) grandeurs evoluees aux noeuds Dans un premier temps, on récupère nos grandeurs venant des points reponse ? 5 <----d'intégrations choix d'isovaleur (grandeurs scalaires) venant des pts d'integ a visualiser listes de type de ddl a visualiser Maillage nb: 1 liste des types de ddl disponibles debut_List_IO= (taille= 78) SIG11 SIG22 SIG33 SIG12 SIG23 SIG13 EPS11 EPS22 EPS33 EPS12 EPS23 EPS13 DEPS11 DEPS22 DEPS33 DEPS12 DEPS23 DEPS1 3 Green-Lagrange11 Green-Lagrange22 Green-Lagrange33 Green-Lagrange12 Green -Lagrange23 Green-Lagrange13 Almansi11 Almansi22 Almansi33 Almansi12 Alman si23 Almansi13 logarithmique11 logarithmique22 logarithmique33 logarithmiqu e12 logarithmique23 logarithmique13 Cauchy_local11 Cauchy_local22 Cauchy_lo cal33 Cauchy_local12 Cauchy_local23 Cauchy_local13 Almansi_local11 Almansi_ local22 Almansi_local33 Almansi_local12 Almansi_local23 Almansi_local13 Def _principaleI Def_principaleII Def_principaleIII Sigma_principaleI Sigma_prin cipaleII Sigma_principaleIII Vit_principaleI Vit_principaleII Vit_principale III Delta_def11 Delta_def22 Delta_def33 Delta_def12 Delta_def13 Delta_def2 3 Spherique_eps Q_eps Cos3phi_eps Spherique_sig Q_sig Cos3phi_sig contrai nte_mises contrainte_tresca <mark>def_duale_mises</mark> def_equivalente def_duale_mises_ maxi vitesse def equivalente energie elastique dissipation plastique dissipa tion visqueuse Maillage nb: 1 liste des types de ddl enregistres debut_List_IO= (taille= 1) contrainte_mises donner le ddl a visulaliser (to) tous les ddl (une liste de ddl) (ef) pour effacer la liste (ef1) effacer un ddl de la liste (0 ou f ou fin) fin choix ddl Puis on visualise par exemple notre reponse ? contrainte_mises def_duale_mises <-----contrainte de mises et nos déformations de mises

(to) tous les ddl (une liste de ddl) (ef) pour effacer la liste effacer un ddl de la liste (ef1) fin choix ddl (0 ou f ou fin) reponse ? f 🛶 (0 ou f ou fin) fin modif (1) ou (de) parametres par defaut:(2) ou (to) toutes les isovaleurs (3) parametres generaux pour la sortie (4) ddl naturellement defini aux noeuds (5) grandeurs scalaires venant des pts integ (6) grandeurs tensoriel venant des pts integ (7) grandeurs particulieres venant des pts integ (8) choix de l'ancien format gmsh (faux par defaut) (9) ddl etendu aux noeuds (10) grandeurs evoluees aux noeuds reponse ? 10 <---grandeurs évoluant aux nœuds par 10 choix d'isovaleur (grandeurs evoluees) defini aux noeuds, a visualiser (0 ou f ou fin) fin choix grandeurs evoluees listes de type de grandeur evoluees a visualiser Maillage nb: 1 liste des types de grandeurs enregistres: FORCE GENE EXT FORCE GENE INT Maillage nb: 1 liste des types de grandeurs evoluees disponibles FORCE_GENE_EXT FORCE_GENE_INT VECT_PRESSION VECT_FORCE_VOLUM VECT_DIR_FIXE VECT_SURF_SUIV VECT_HYDRODYNA_Fn VECT_HYDRODYNA_Ft VECT_HYDRODYNA_T VECT_LINE VECT LINE SUIV VECT_REAC_N donner la grandeur a visualiser (to) toutes les grandeurs (de) les grandeurs par defaut (une liste de grandeurs evoluees) pour effacer la liste (ef) (0 ou f ou fin) fin choix grandeur tensorielle reponse ? FORCE GENE EXT FORCE GENE INT ←

====== fin du module de visualisation format Gm: Appuyer sur f, jusqu'à obtenir ce menu :	sh	======							
======== choix du module de visualisation interactive ====================================									
sauvegarde des commandes de visualisation	?	(гер 1)							
visualisation automatique	?	(rep 2)							
visualisation au format vrml ?		(rep 3)							
visualisation par fichier de points, format maple	?	(гер 4)							
visualisation au format geomview	?	(гер 5)							
visualisation au format Gid	?	(гер б)							
changement de fichier de commande .CVisu	?	(гер 7)							
visualisation au format Gmsh	?	(гер 8)							
nom grandeurs actuelles accessibles globalement	?	(гер 9)							
fin		(rep 0 ou f)							
reponse ? 1									
======================================	гас	tive =============							
sauvegarde des commandes de visualisation	?	(rep 1)							
visualisation automatique	?	(rep 2)							
visualisation au format vrml ?		(гер 3)							
visualisation par fichier de points, format maple	?	(rep 4)							
visualisation au format geomview	?	(rep 5)							
visualisation au format Gid	?	(rep 6)							
changement de fichier de commande .CVisu	?	(rep 7)							
visualisation au format Gmsh	?	(rep 8)							
nom grandeurs actuelles accessibles globalement	?	(гер 9)							
fin		(rep 0 ou f)							
reponse ? f	Icul	pour ainsi obtenir nos							
différents résultats sélectionnés									
temps_user:0/00:00:02.54									
		=======							
fin HEREZH++									
		=======							

c) ¼ de la plaque:

Nous allons visualiser le résultat obtenu grâce à la mise en donnée précédente. Pour cela il suffit d'ouvrir le fichier « plaque_deplace_Gmsh.pos » avec gmsh. Puis faire quelques modification dans les options comme ci-contre (figure 4):

😣 Options	- View [0]			8 Options					
General Geometry Mesh Solver Post-pro View [0]	General Axes Vis 3D deplace	sibility Transfo Asp Plot type View name Sélec	pect Color Map	General Geometry Mesh Solver Post-pro View [0]	General Axes Vis	Aspect Color Map			
	10 Filled iso-value:	Intervals Intervals type	%.3g Format Linear		Color segment 1.0	Line display	□ Stipple in 2D		
	Default Min Max	Range mode Custom min Custom max	Saturate			Displacement 0 60 1	Vector display Arrow size Displacement fa	Amplifie le déplacem	ment
	Adapt visualizati	on grid			Self 💌	Data source for	vector fields		
	- 0 +	Maximum recursion	n level		Barycenter 💌	Glyph location	Left-aligned 💌		
	0.0100	Target visualizatior	n error		Von-Mises 💌	Tensor display			

Figure 4: Réglages option

Ces modifications permet de visualiser notre déformée comme suit (figure 5):

Figure 5: 1/4 plaque sollicitée en pression

Voici la simulation pour le quart de plaque donc celui-ci se déplace au maximum de 0,913 mm au centre. On constate bien que sur les côtés la plaque est en appuie puis grâce aux conditions de symétries cela reproduit le comportement réel d'une plaque entière. Cela est très utile d'utiliser les conditions de symétries lors d'un calcul pour augmenter sa rapidité et diminuer la taille en mémoire.

d) Plaque entière :

Pour reproduire la simulation de la plaque entière sous gmsh à l'aide du ¼ de la plaque précédente il suffit d'effectuer les manipulations suivantes. Dans un premier temps ouvrir 4 fois le même fichier « plaque_deplace_Gmsh.pos » avec gmsh. Ensuite paramétrer les réglages suivant :

8 Options	- View [0]	😣 Options - View [1]
General Geometry Mesh Solver Post-pro View [0] View [1] View [2] View [3]	General Axes Visibility Transfo Aspect Color Map Coordinate transformation: Raise: I.o 0 X 0	General Geometry Mesh Solver Post-pro View [0] General Axes Visibility Transfo Aspect Color Map Coordinate transformation: Raise: 0 0 0 0 0 View [0] 0 1.0 0 X 200 0 0 View [1] 0 1.0 0 Y + 0 0 0 0 View [2] 0 0 1.0 Z 0 0 0 0 View [3] 0 Normal raise Use general transformation expressions Self Data source Deccalage de 200 en x = large V0 x xpression yquetrie par rapport à x yquetrie par rapport à x v2 Z expression y2 Z expression

Même méthode pour les deux autres vues

Options - View [2]								8 Options	- Vie	w [3]							
General Geometry Mesh Solver Post-pro View [0] View [1] View [2] View [3]	General Axes Visibility Transfo Aspect Color Map Coordinate transformation: Raise: 0						General Geometry Mesh Solver Post-pro View [0] View [1] View [2] View [3]	General Axes Visibility Transfo Aspect Color Ma Coordinate transformation: Raise: 1.0 0 X 200 0 0 1.0 0 Y + 200 0 0 0 1.0 Z 0 0 0 0 0 Normal raise 0 0 0 0 0 0						Мар			
	Use general transformation expressions View [0] Data source 1 Factor v0 X expression v1 Y expression v2 Z expression					essions				■ U Vie 1 v0 v1 v2	Ise ge	neral	tran	Sforma Data : Factor X exp Y exp Z exp	tion exp source ression ression ression	ressions	

Figure 6: Réglages options pour le positionnement des vues

Cela nous permet de positionner nos différentes vues dans l'espace pour reproduire notre plaque entière. Ensuite, il est important de vérifier que chacune des vues possèdent les mêmes paramètres lors de la figure 4 (même step, même displacement factor). Ainsi nous devons obtenir cela :

e) Affichage des efforts :

Nous allons afficher les efforts externes et internes. Cela nous permettra de savoir si notre mise en donnée est bonne. En effet on peut visualiser le sens des efforts, leur intensité donc savoir si nous nous sommes trompés ou non. Pour cela il faut sous gmsh ouvrir les 2 fichiers suivant « FORCE_GENE_INT_ Gmsh.pos et FORCE_GENE_EXT_Gmsh.pos » et modifier légèrement les options (figure 8) :

Appliquer le même réglage pour l'autre force pour voir apparaître les efforts internes et externes comme ci-contre :

Figure 9: Affichage des efforts internes et externes

On peut ainsi voir si notre mise en donnée est correcte. On remarque que pour nos efforts externes notre effort de type ponctuel est bien appliqué vers le bas sur tous les nœuds de la face du dessus (121 nœuds). Cependant pour nos efforts internes cela reflète nos moments ce qui permettent aux frontières de symétrie de la plaque à rester verticales, c'est-à-dire, on visualise la répartition des efforts dans l'épaisseur ce qui va conduire à des moments de flexion.

III) Torseurs de réactions :

a) Obtention des torseurs de réactions

Pour aller plus loin, il est possible grâce à un fichier.maple de récupérer nos torseur de réactions liés à nos conditions limites. Ce fichier nous permet d'obtenir des grandeurs sous forme de tableau. Pour le créer il suffit avec le mot clé « avec plus visualisation » de suivre les étapes suivantes :

>>>> temps fin (1) atteint <<<<< 1		
<pre>>>> temps fin (1) atteint <<<< 1 ================================</pre>	active ======== ? (rep 1) ? (rep 2) (rep 3) ? (rep 4) ? (rep 5) ? (rep 6) ? (rep 7) ? (rep 8) ? (rep 9) (rep 0 ou f) points au format maple ======	
<pre>=== choix des increments utilises pour l'initialis = option par defaut : tous les increments choix d'un nombre plus petit d'increment reponse ? 1 On veut tous les incréments se</pre>	ation de la visualisation === (rep 1) (rep 2)	otenir si on veut ur pécifique
exemples 	cni cmv cg ▲ ani Le menu suivant a visu f	pparaît

ROMAN Gaëtan

ENSIBS – Mécatronique 2^{ème} année

.....choix numeros d'increment: cnichoix du ou des maillages a visualiser: CMVchoix grandeurs: cganimation_maple: anivisualisation: visu arret visualisation interactive pour format maple: f nos grandeurs -> rep : glo grandeurs globales torseurs de reactions -> rep : tre moyenne, maxi, mini etc. sur ref N -> rep : smN moyenne, maxi, mini etc. sur ref E -> rep : smE ddl aux noeuds -> rep : noe ddl etendu aux noeuds -> rep : net ? grandeur particuliere aux noeuds -> rep : nop ? grandeurs generique aux elements -> rep : ele grandeurs particulieres aux elements -> rep : elp grandeurs tensorielles aux elements -> rep : elt -> rep : sty style de sortie pour accepter la valeur par defaut -> rep : o pour arreter les questions -> rep : fin (ou f) reponse ? tre Permet d'obtenir nos torseurs ----- maillage: plaque_quad liste des ref de torseur de reaction disponibles: >>> N_bas_droit N_bas_arriere N_gauche N_avant ref que vous voulez visualiser (rep grandeurs?) toutes les ref (rep par defaut) (rep : to) effacer la liste actuelle (rep : ef) (pour terminer tapez : fin (ou f)) grandeur ? to 🚽____ ---- maillage: plaque_quad liste des ref de torseur de reaction disponibles: >>> N_bas_droit N_bas_arriere N_gauche N_avant liste des ref de torseur actuellement a sortir: <<<: N_bas_droit N_bas_arriere N_gauche N_avant Appuyer sur « f » afin d'arriver sur le menu ci-dessous

sauvegarde des commandes de visualisa <u>tion</u>	÷	(rep 1)
visualisation automatique	?	(rep 2)
visualisation au format vrml ?		(гер 3)
visualisation par fichier de points, format maple	?	(rep 4)
visualisation au format geomview	?	(rep 5)
visualisation au format Gid	?	(rep 6)
changement de fichier de commande .CVisu	?	(rep 7)
visualisation au format Gmsh	?	(rep 8)
nom grandeurs actuelles accessibles globalement	?	(rep 9)
fin		(rep 0 ou f)
reponse ? 1	ix	
========= choix du module de visualisation inter	гас	tive ===========
sauvegarde des commandes de visualisation	?	(rep 1)
visualisation automatique	?	(rep 2)
visualisation au format vrml ?		(гер 3)
visualisation par fichier de points, format maple	?	(rep 4)
visualisation au format geomview	?	(rep 5)
visualisation au format Gid	?	(гер б)
changement de fichier de commande .CVisu	?	(rep 7)
visualisation au format Gmsh	?	(гер 8)
nom grandeurs actuelles accessibles globalement	?	(rep 9)
fin		(rep 0 ou f)
reponse ? f		
On quitte		
temps_user:0/00:00:11.05 system:0/00:00:00.45 ree	l:0	/00:04:50.81
		=======
fin HEREZH++		

Figure 10: Création fichier.maple

Une fois ce fichier crée il est nécessaire de relancer le calcul pour obtenir nos torseurs de réactions. Notre fichier.maple se présente ainsi :

La colonne 1 correspond au temps donc nos incréments. Les autres sont liés aux composantes de nos torseurs de réactions.

				iscuis de le	0000000	
	#4 24 (nomb	re de torseur	's et nombre t	otal de gran	deurs associe	es)
	# N bas droit	[2]Rx [3]R	.v [4]Rz [5]	Mx [6]Mv [71Mz :	,
Nos références	# N bas arrie	re [8]Rx [9) Rv [10]Rz	[11]Mx [12]	Mv [13]Mz :	
	# N_gauche [14]RX [15]Ry	/ [16]RZ [17	JMX [18]MY	[19]MZ ;	
	# N_avant [2	0]Rx [21]Ry	[22]Rz [23]	Mx [24]My	[25]Mz ;	
	# Colonne 1					
			Colonne 5	1		
#incrément 1		Colonne 15				
1.00000000000	00e-01					
	[RX]	[RY]	[RZ]	(MX]	[MY]	[MZ]
N_bas_droit	0.0000000000000e+00	0.000000000000e+00	-4.723148233668e+01	-4.461412927749e+0)3 -4.020947538312e-0	1 0.000000000000e+00
N_bas_arriere	0.000000000000e+00	0.00000000000e+00	-4.723148232049e+01	4.020947537519e-01	4.461412926861e+03	0.000000000000e+00
N gauche	-8.387334890390e-02	0.000000000000e+00	0.00000000000e+00 (.0000000000000e+00	1.590341031796e+03 6	.083173884311e+03
N_avant	0.00000000000e+00	-8.387335556085e-02	0.00000000000e+00	-1.590341031820e+0)3 0.000000000000e+00	-6.083173884679e+03

Il y a au total 10 incréments dont le premier correspond à notre pas de temps 0,1s jusqu'à notre temps fin 1s

#incrément 10							
1.000000000000)e+00						
	[RX]	[RY]	[RZ]	[MX]	[MY]	[MZ]	
N_bas_droit	0.000000000000e+00	0.000000000000e+00	-4.969049513980e+02	-4.117729480279e+04	-7.072731425398e+0	0.000000000000e+00	
N_bas_arriere	0.000000000000e+00	0.000000000000e+00	-4.969049513771e+02	7.072731425332e+00	4.117729480139e+04	0.000000000000e+00	
N_gauche	-9.749850480631e-03	0.000000000000e+00	0.000000000000e+00	0.000000000000e+00 1	.936325820643e+04 2	2.654975785363e+05	
N_avant	0.000000000000e+00	-9.749875613153e-03	3 0.000000000000e+00	-1.936325820652e+04	0.000000000000e+00	0 -2.654975785378e+05	

Figure 11: Fichier.maple

La figure 11 présente nos torseurs mais cela a été ré-organisé sinon les résultats sont exposés par lignes et colonnes. Chaque ligne est liée à son incrément donc possède à la suite ces grandeurs identifié par colonne. Sachant que RX, RY et RZ correspondent aux composantes de notre résultante et MX, MY et MZ à celles de nos moments.

$$\left\{ T_{pi\acute{e}ce \rightarrow environnement} \right\}_{point \ de \ coordonn\acute{e}s \ (0,0,0)} = \begin{cases} Rx & Mx \\ Ry & My \\ Rz & Mz \end{cases}_{(x,y,z)}$$

b) Vérification des valeurs des torseurs

L'objectif est de comprendre comment sont calculés ces torseurs de réactions. Prenons comme exemple la référence N_bas_droit et N_bas_arriere.

Explication : Notre plaque est constituée de 363 nœuds dont 3 couches de nœuds sur l'épaisseur donc 121 nœuds sur une couche. On applique sur nos nœuds de la face du dessus un effort de 10N selon z soit 1210N.

Vérifions cette valeur :

Pour nos deux références N_bas_droit et N_bas_arriere, ces nœuds sont seulement bloqués selon z donc il y aura un effort selon ce même axe. Pour retrouver 1210 N il suffit de sommer ces 2 résultantes : Rz = -496,9 - 496,9 = -993,8N

Il y a une différence, en faite cela est dû à nos références car en effet, le nœud 1 appartient aux deux références donc cette effort à ce nœud sera ajouté une fois en trop comme on peut le voir dans notre fichier.her :

Il est constitué de notre maillage, il possède :

- Le Nombre de nœuds, le nombre d'éléments, la dimension de la structure etc
- Les coordonnées des différents nœuds
- Les références des nœuds (N_bas_droit etc)
- Nos éléments créés via les nœuds
- Les références de nos éléments

On observe cela :

N_droit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32		
33																	
N_gauche	331	332	333	334	335	336	337	338	339	340	341	. 342	343	344	345	346	<
347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362		
363																	
N_avant	31	32	33	64	65	66	97	98	99	130	131	132	163	164	165	196 <	—
197	198	229	230	231	262	263	264	295	296	297	328	329	330	361	362		
363																	
N_haut_dr	oit	3	6	9	12	15	18	21	24	27	30	33		ófóron	and an	nouid	c utilicác
N_haut_ga	uche	333	336	339	342	345	348	351	354	357	360	363	Les m	ereren	Les des	nœuu	5 utilises
N_haut_ar	гіеге	3	36	69	102	135	168	201	234	267	300	333	pour	nos co	nditions	s limite	es
N_haut_av	ant	33	66	99	132	165	198	231	264	297	330	363	1				
N_bas_dro	it	(1)	4	7	10	13	16	19	22	25	28	31 <					
N_test 31		\bigcirc															
N_bas_gau	che	331	334	337	340	343	346	349	352	355	358	361					
N_bas_arr	iere	(1)	34	67	100	133	166	199	232	265	298	331					
N_bas_ava	nt	31	64	97	130	163	196	229	262	295	328	361 <					
N_arriere	_droit	1	2	3													
N_arriere	_gauche	331	L 332	2 33	3												
N_avant_d	roit	31	32	33													
N_avant_g	auche	361	362	363													
N_haut_ar	riere_c	Iroit	3														
N_haut_ar	riere_g	jauche	333														
N_haut_av	ant_gau	Jche	363														
N_haut_av	ant_dro	oit	33														
N_bas_arr	iere_dr	oit	1														
N_bas_arr	iere_ga	auche	331														
N_bas_ava	nt_gaud	the 3	361														
N_bas_ava	nt_droi	it 3	31														
								1	c /								

Figure 12: Une partie des références des noeuds

D'ailleurs on peut voir que l'effort au nœud 1 n'est pas négligeable puisque celui-ci est conséquent d'après la figure suivante :

Pour connaitre les efforts sur chaque nœud lié à nos conditions une méthode est de modifier légèrement la fin du fichier.info comme suit :

para_affichage #	
# PARAMETRE VALEUR #	
FREQUENCE_SORTIE_FIL_DU_C	CALCUL 1
#	
resultats #pas_de_s COPIE 0	sortie_finale_
_fin_point_info_	Mettre cela en commentaire Lorsque le calcul sera de nouveau calculé il y aura différent fichier créé dont :
	 Plaque.reac possédant nos réactions sur chaque nœud Plaqque.ddl possédant les déplacements des nœuds

A la fin du fichier.reac, celui-ci récapitule nos efforts individuels sur chacun de nos nœuds :

```
1
    0 0 216.10753227887807
    0 0 -37.454918402243244
4
7
    0 0 -44.314137129626673
10
     0 0 -91.097174091444444
     0 0 -56.940770727036892
13
16
     0 0 -109.07453762728187
19
     0 0 -59.825686145806543
22
     0 0 -109.10982915642093
     0 0 -59.647230681311498
25
28
     0 0 -110.58041125553714
31
     0 104.27637522545103 -34.885737560268268
```

On remarque que le nœud 1 possède un effort important donc d'après nos calculs précédents, il ne faut pas ajouter deux fois la valeur du nœud 1, on obtient cela :

Rz = -496,9 - 496,9 - 216,1 = -1209,9N

Le résultat est ainsi cohérent avec notre type d'effort.

Pour ne pas reproduire cette erreur il suffit de modifier le fichier.her c'est-à-dire de retirer notre nœud 1 de ces deux références et de prendre qu'une seule référence possédant ce nœud (voir figure 14).

	N_gauche 347	331 348	332 349	333 350	334 351	335 352	336 353	337 354	338 355	339 356	340 357	341 358	342 359	343 360	344 # Sans	345 les no	346 0euds 36:	1 362 363	
	N_avant	31 198	32	33 230	64 231	65 262	66	97 264	98 295	99 296	130 297	131 328	132 329	163 330	164 # Sans	165 les noe	196 20ds 361	362 363	
	N ligne a	vant da	auche 3	61 362	363 #	Avec le	s noeud	s 361 3	62 363		227	520	525	550				502 505	
	N haut dr	oit	3	6	9	12	15	18	21	24	27	30	33						
	N_haut_ga	uche	333	336	339	342	345	348	351	354	357	360	363						
	N_haut_ar	riere	3	36	69	102	135	168	201	234	267	300	333						
	N_haut_av	ant	33	66	99	132	165	198	231	264	297	330	363						
	N_bas_dro	it	4	7	10	13	16	19	22	25	28	31	#Sans	le no	eud 1 🔼				
	N_test 31																		
	N_bas_gau	che	331	334	337	340	343	346	349	352	355	358	361	_					
	N_bas_arr	iere		34	67 1	00 1	.33 1	66 1	.99 2	32 2	65 2	98 3	31 #S	ans le	noeud 1	-		-	
	N_bas_ava	nt	31	64	97	130	163	196	229	262	295	328	361						
	N_arriere	_droit	1	. 2		-													
	N_arriere	_gaucne	2 33	1 33	2 33	3													
	N_avant_o	rott	31	32	33								Mod	dificat	tions d	oc rófa	óronco	c	
	N_avanc_y	riere (1001	302	202								IVIO	inicat	lions u	estell	erence	3	
	N haut ar	riere d	auche	333															
	N haut av	ant dau	iche	363															
	N baut av	ant dro	oit	33															
C	N bas arr	iere dr	oit	1	#Ave	c le No	eud 1	>											
	N bas arr	tere ga	uche	331		- 1													
	N bas ava	nt gaud	he	361															
	N bas ava	nt droi	lt	31															
	Figure 14: Modification des noeuds																		

Puis de rajouter ces références dans notre fichier.info et de relancer le calcul :

#----# nom du maillage | Ref noeud | Blocages
#----N_bas_droit UZ
N_bas_arriere UZ
N_bas_arriere_droit UZ
N_gauche UX
N_avant UY
N_ligne_avant_gauche 361 362 363

On obtient ainsi de nouveau résultat dans notre fichier.maple :

Temps fin 1s <=> Incrément 10 1.00000000000e+00												
	[RX]	[RY]	[RZ]	[MX]	[MY]	[MZ]						
N_bas_droit	0.00000000000e+00	0.000000000000e+00	-7.129304327770e+02	-4.117612376773e+04	-2.597887641017e+00	0.00000000000e+00						
N_bas_arriere	0.00000000000e+00	0.00000000000e+00	-7.129304327851e+02	2.597887640989e+00 4	1.117612376740e+04 0	.0000000000000e+00						
N_bas_arriere_droit	0.00000000000e+00	0.00000000000e+00	2.161075322789e+02	4.474480463554e+00 -4	1.474480463554e+00 0	.0000000000000e+00						
N_gauche	3.545174104118e+02	0.00000000000e+00	0.00000000000e+00	0.000000000000e+00 1.	.806397130773e+04 2.3	300457414133e+05						
N_avant	0.00000000000e+00	3.545174104014e+02	0.00000000000e+00	-1.806397130782e+04 (0.00000000000e+00 -2	2.300457414133e+05						
N_ligne_avant_gauche	-3.545804965964e+02	-3.545804965943e+02	2 0.00000000000e+00	-1.299634880870e+03	1.299634880882e+03	2.055567165371e-07						

Figure 15: Torseur de réaction

Vérification :

Rz = -712,9 - 712,9 + 216,1 = -1209,7N => c'est correct

Pour calculer les moments de nos références, il suffit de transporter nos réactions individuels de nos nœuds au point supposé A de coordonnées (0,0,0) puis de sommer tous ces moments.

Formule utilisé : $\overrightarrow{M_A} = \overrightarrow{M_{noeud_l}} + \overrightarrow{A Noeud_l} \wedge \overrightarrow{R_{noeud_l}}$

Les distances de nos nœuds par rapport au point de coordonnées (0,0,0) se trouve dans le fichier.ddl.

Exemple :

N bas arriere droit possède le nœud 1 Numéro du nœud Dans le fichier.ddl on observe : Numero : [1]****////, du maillage: <1> ======== Coord t=0 : 0 0 0 , Coord a t : 0.02070487972524673 0.02070487972524444 0 , <Coord a t+dt: 0.02070487972524673 0.02070487972524444 0 , Coordonnée du nœud 6 Ddl a <<0>>> <<t>> (et variation) <<tdt>>> (et variation) : X1 = 0, 0.02070487972524673 (0.02070487972524673), 0.02070487972524673 (0.02070487972524673); X2 = 0, 0.02070487972524444 (0.02070487972524444), 0.02070487972524444 (0.02070487972524444); X3 = 0 (Ο, 0), Effort du noeud R Xi 0 (0); Ο, R X1 = 0 (0), 0 (0); R X2 = 0 (0, 0), 0 (0); R X3 = 0, 216.1075322788781 (216.1075322788781), 216.1075322788781 (216.1075322788781); FORCE GENE EXT Coordonnee dim= 3 0 0 0 FORCE GENE INT Coordonnee dim= 3 0.00021669324523365674 0.0002166938741785529 216.10753227887807

Appliquons la formule précédente :

$$\overrightarrow{M_{A}} = \overrightarrow{M_{noeud_{1}}} + \overrightarrow{A \ Noeud_{1}} \wedge \overrightarrow{R_{noeud_{1}}}$$
$$\overrightarrow{M_{A}} = \overrightarrow{0} + \begin{pmatrix} 0,0207\\0,0207\\0 \end{pmatrix} \wedge \begin{pmatrix} 0\\0\\216,1 \end{pmatrix} = \begin{pmatrix} 4,47\\-4,47\\0 \end{pmatrix}$$

On retrouve bien les mêmes valeurs que sur la figure 15.

Appliquons cette même formule mais sur la référence N_bas_droit qui possède les nœuds suivant : 4 7 10 13 16 19 22 25 28 31

Noeuds	Coordonr	nées des r	noeuds	Efforts selon z	Moments des nœuds en A			
	Х	Y	Z	Rz individuel	Х	Y	Z	
4	0,01005	10,021	0	-37,45	-375,3	0,376	0	
7	0,00105	20,022	0	-44,31	-887	0,0405	0	
10	-0,00465	30,022	0	-91,09	-2734,7	-0,424	0	
13	-0,00736	40,022	0	-56,94	-2278,9	-0,419	0	
16	-0,00771	50,021	0	-109,07	-5455 <i>,</i> 8	-0,841	0	
19	-0,00657	60,018	0	-59,83	-3590,9	-0,393	0	
22	-0,00476	70,015	0	-109,11	-7219,2	-0,491	0	
25	-0,00302	80,010	0	-59,65	-4772,6	-0,18	0	
28	-0,00178	90,005	0	-110,58	-9952 <i>,</i> 8	-0,197	0	
31	-0,00136	100	0	-34,89	-3489	-0,0475	0	

Puis en sommant tous ces moments et ces efforts il est possible de retrouver notre torseur de réaction lié à cette référence :

$$\left\{T_{N_bas_droit \rightarrow environnement}\right\}_{Point \ de \ coordonn\acute{e}s \ (0,0,0)} = \begin{cases} 0 & -40756\\ 0 & -2,57\\ -712,9 & 0 \end{cases}_{(x,y,z)}$$

IV) Conclusion :

Il vous est dorénavant possible d'appliquer un effort de type ponctuel sur une pièce quelconque et d'utiliser les conditions de symétries pour améliorer la rapidité du calcul. Mais aussi d'afficher les différents efforts selon le type de force (internes, externes etc..), visualiser ça déformée mais aussi de reconstituer un solide mettant en œuvre des conditions de symétries. D'ailleurs vous êtes dorénavant capable de créer un fichier.maple et de comprendre comment celui-ci fonctionne.

Dossier : mise_en_donnees_2_affichage_efforts

- Plaque100x100x2.her (maillage de la plaque)
- Plaque.info (mise en donnée du calcul)
- Poutre.Cvisu (fichier de sortie pour le traitement des résultats à observer)