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Abstract

The aim of this paper is to describe an efficient method to connect two independent softwares so as to jointly use best qualities of each
software around a complex problem solved by the finite element method (FEM). This connection makes it possible to extend quickly and
easily the applicability of new models developed in academic softwares, by their simultaneous use with commercial softwares. This is
particularly interesting when these models are very difficult to implement directly in commercial softwares.

Most of the commercial FEM applications allow users to add additional features, physical models or boundary conditions via a pro-
gramming interface. Within these user routines, access to internal data structures is possible, either through subroutine parameters and
global variables, or via internal modules for reading and storing data. We use these capabilities to link the commercial software ABA-
QUS and an academic object-oriented C++ software HEREZH++, via the user-defined mechanical material behaviour (Umat). In this
interface, HEREZH++ computes the mechanical behaviour of material and the code coupling performs a communication procedure
between ABAQUS and HEREZH++. This paper describes this architecture which allows to implement easily original behaviour law
in the commercial ABAQUS code. The asynchronous code coupling is made with a named piped interprocess communication method
and an interface written in c/C++. Several test samples are presented to show the efficiency and accuracy of the proposed implementa-
tions concerning the computational time. In particular, an industrial test is carried out with an original behaviour model of elasto–visco-
hysteresis which would have been very difficult to implement directly in ABAQUS.
! 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Finite element analysis is an extremely powerful numer-
ical technique for the solution of a complex linear/non-lin-
ear system equation representing physical/engineering
processes. In this field, correctly describing the behaviour
of the material is extra challenging when it comes to the
processing of materials and manufacturing processes.
Material models must account for varying strain, strain-
rate, temperature, etc.

Such constitutive models could then be implemented by
researchers as User-defined Material models within some of
the commercial finite element codes. This approach allows
researchers to focus on the material response modeling
rather than the entire finite element software system. This
approach is uncoupled from the commercial software ven-
dor’s business-driven priorities and permits material model
development in unison with material characterization test-
ing (e.g. [1–4]). Then, once the material model is matured
and verified, discussion can take place with the commercial
software vendor to integrate the new material model into
their code as a fully functional option, including appropri-
ate documentation and testing.
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Usually, introduction of a new constitutive model in FE
code is made with a user subroutine, named ‘‘Umat” in this
paper, by reference to the user interface of Abaqus [5]1 sim-
ilar interfaces can be found for instance in LS-DYNA [6],
CASTEM [7], ZEBULON [8], etc. This subroutine is usu-
ally written in FORTRAN, with a fixed list of input/output
data arguments. Umat has two major functions: it updates
the stresses at the end of each time increment and it pro-
vides the material Jacobian matrix for the mechanical con-
stitutive model, and is also executed for each material
integration point at each iteration in each time increment.
Tangent modulus of each integration point is calculated
based on the stress level at the beginning of each time incre-
ment. The accuracy of the results depends on the size of the
time increment. A smaller time increment will yield better
results, but also results in longer computation time.

With this method, in most cases, numerical implementa-
tion of the models into finite element codes is straightfor-
ward, but this method can also cause some difficulties.
The first difficulty appears during the crucial stage of test-
ing (‘‘debug”). Generally, this stage is a major step for
industrial software because this code is optimized for its
high speed time execution and not for debugging. A first
solution would be to employ another external software,
in using the same subroutine Umat but in simulating only
the behaviour at only one integration point (e.g. software
code SiDoLo [9]). In this case, however, it is not really pos-
sible to do any finite element computation. Another solu-
tion is to employ a second finite element software, which
is perfectly controllable in debug mode, to develop the
Umat (e.g. [8]).

Another difficulty in using subroutine Umat proceeds
from the FORTRAN programming environment. Indeed,
nowadays, several scientific developments are made in
object-oriented language, for example in Smalltalk [10] or
C++ [11,12], or in using object-oriented finite element
framework (e.g. Femlab [13,14]). The object-oriented pro-
gramming technique can greatly improve the implementa-
tion efficiency, extendibility, and ease of maintenance of
large engineering software. But this technique is also diffi-
cultly introduced in a Umat, classically proposed in FOR-
TRAN 77 in ABAQUS, even if the FORTRAN 90 or 95
norms have brought about some object-oriented method
improvements.

In this context, we have tried to define a new form of
software interface to link two codes: a commercial FE soft-
ware ABAQUS and an object-oriented FE software, devel-
oped in C++, named HEREZH++ [15]. This software
provides material behaviour computing, and transfers data
to ABAQUS using Umat at each integration point and at
each iteration of incremental step.

We use interprocess communication by named pipes to
define the interface between the two different software ini-

tially operating asynchronously. HEREZH++ is managed
by an independent process which can, in particular, define
its self-memory location sizes. With this proposed tech-
nique, the development of new material behaviour and its
debugging can be carried out with any programming lan-
guage frame which assures final connection with commer-
cial software without modifying the latter.

This paper is organized as follows. In Section 2, the User
subroutine Umat to define a material’s mechanical behav-
iour is introduced. Section 3 presents the in-house code
HEREZH++ and its implementation in C++. In Section
4, the implementation of the code coupling between ABA-
QUS and HEREZH++ is discussed. The new code cou-
pling is validated through some numerical examples using
an elastic behaviour law in Section 5. Finally, to show
the interest and the limitations of the code coupling, we
use an original behaviour model, named elasto–visco-hys-
teresis [16–18] in an industrial test. With this material
model, the hysteretic part normally needs larger dynamic
memory storage and we show the advantages of this code
coupling in this example.

2. Umat: User subroutine to define a material’s mechanical
behaviour

User-defined mechanical material behaviour in ABA-
QUS is provided by means of an interface whereby any
mechanical constitutive model can be added to the library.
It requires that a constitutive model (or a library of models)
is programmed in User subroutine Material UMAT (ABA-
QUS/Standard) or VUMAT (ABAQUS/Explicit). User
subroutines can be included in a model by using the user
option on the ABAQUS execution procedure to specify
the name of a FORTRAN source or object file that con-
tains the subroutines. In ABAQUS’s documentation [5],
some examples of application of Umat are proposed. The
Umat:

! can be used to define the mechanical constitutive behav-
iour of a material;

! can be used with any procedure that includes mechanical
behaviour;

! can use solution-dependent state variables;
! must update the stresses and solution-dependent state
variables to their values at the end of the increment
for which it is called;

! must provide the material Jacobian matrix, oDr
oDe, for the

mechanical constitutive model.

The ABAQUS code calculates the strain increments for
a time step and transmits them to the Umat subroutine at
the beginning of each time equilibrium. This subroutine
is called at all material calculation Gauss points of ele-
ments, with the call listed in Table 1.

According to the complexity of the user-defined mate-
rial, some or all the parameters can be used. One can refer
to the ABAQUS’s documentation [5], for the precise

1 In this paper, we refer mainly to subroutine Umat used in the
commercial software ABAQUS.
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meaning of all these input–output parameters. But in all
situations, variables to be defined are at least:

! DDSDDEðNTENS;NTENSÞ ¼ oDr
oDe: Jacobian matrix of the

constitutive model, where Dr are the stress increments
and De are the strain increments. The size of this array
depends on the value of NTENS (Size of the stress or
strain component array). DDSDDEðI ; JÞ defines the
change in the Ith stress component at the end of the time
increment caused by an infinitesimal perturbation of the
Jth component of the strain increment array.

! STRESSðNTENSÞ: This array is passed in as the stress
tensor at the beginning of the increment and must be
updated in this routine to be the stress tensor at the
end of the increment. In finite-strain problems the stress
tensor has already been rotated to account for rigid
body motion in the increment before Umat is called,
so that only the co-rotational part of the stress integra-
tion should be done in Umat. The measure of stress used
is ‘‘true” (Cauchy) stress.

An accurate Jacobian matrix oDr
oDe is essential to achieve

fast quadratic convergence in the global Newton–Raphson
iterations.

3. The finite element code HEREZH++

The object-oriented framework of HEREZH++ [15]
described here was implemented in C++ [19]. HEREZH++
is dedicated to research in the field of mechanics in large
transformations. Its objective is to be sufficiently flexible

to easily integrate new concepts. The various interesting
concepts of object-oriented language made profitable in
finite element software are: encapsulate data, template, sta-
tic and dynamic polymorphism with, in particular, the
overload of operator, for classic classes such as vectors,
tensors, matrices. . . but also for advanced classes with vir-
tual class, such as the finite elements, the behaviours, the
algorithms of resolution. . . Standard Template Library
(STL) is intensively used concerning containers: lists,
adaptable arrays, stacks, associative containers, as well as
the basic algorithms associated such as sorting, merging
and suppression of redundancy. For more details about
HEREZH++ project one can refer to [15].

The development and the suppression of bugs are more
easily carried out with only HEREZH++, compared with
the use of the industrial code whose first vocation is not
correction of bugs. For instance, the developers can use a
symbolic debugger, a tool for finding memory leaks, and
others ‘‘profiling tools” useful to improve the resulting
code. In addition, two processes HEREZH++ can work
in an asynchronous way, while dialoguing to simulate the
final behaviour of the interface between ABAQUS and
HEREZH++.

All the existing material behaviors in HEREZH++ can
be used with the asynchronous interface. Each material
behavior corresponds to a separated class, which inherits
a common pure virtual class. This pure virtual class consti-
tutes then the only interface for the rest of HEREZH++,
for the constitutive law purpose. In this context, according
to a classical way of oriented-object development,
introduction of a new material behavior consists only to

Table 1
Call of the user subroutine material Umat, which in our case, calls a C function, allowing the communication by named pipes

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,
2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

C
INCLUDE ‘ABA_PARAM.INC’

C
CHARACTER%80 CMNAME
DIMENSION STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

C
C C function call for the communication by named pipe

call appelc(%ref(STRESS), %ref(DDSDDE), %ref(SSE),
1 %ref(SPD), %ref(SCD), %ref(RPL), %ref(DDSDDT),
2 %ref(DRPLDE), %ref(DRPLDT), %ref(STRAN), %ref(DSTRAN),
3 %ref(TIME), %ref(DTIME), %ref(TEMP), %ref(DTEMP),
4 %ref(MATERL// char(0)), %ref(NDI), %ref(NSHR),
5 %ref(NTENS), %ref(NSTATV), %ref(PROPS), %ref(NPROPS),
6 %ref(COORDS), %ref(DROT), %ref(PNEWDT), %ref(CELENT),
7 %ref(DFGRD0), %ref(DFGRD1), %ref(NOEL), %ref(NPT),
8 %ref(KSLAY), %ref(KSPT), %ref(KSTEP), %ref(KINC))
RETURN
END
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defining a set of functions, which inherit the virtual func-
tions of the parent’s.

4. Interface technology between ABAQUS and
HEREZH++

Starting from an equilibrium at a given time tn of the
non-linear procedure and at each Gauss integration point,
the input dataflow:

! time increment Dt,
! stress vector frðtnÞg,
! total mechanical strain vector feðtnÞg
! and an initial guess for total mechanical strain increment
vector fDeðtnÞg calculated from current displacement
increments,

are switched to user subroutine Umat. These data are then
transferred between the Umat and HEREZH++ via an
interface (see Section 4.2).

HEREZH++ updates the stress vector frðtnþ1Þg and the
consistent tangent operator oDr

oDe, according to the constitu-
tive laws. Finally, these data are supplied to ABAQUS
via the interface and the Umat. Their flow and the task
of the user-defined subroutine are schematically shown in
Fig. 1.

4.1. Solution for the interface process communication

In the interface between the two processes, Umat and
HEREZH++, there must be fast exchange of data. Inter-
process communication (IPC) provides a mechanism for
exchanging data between processes (either on the same or
different networked computers) and enables communica-
tion between applications even though they may be written
in different languages for different target operating systems.

There are various forms of IPC [20]. All of these have the
objective of moving data from one address space to
another.

In Unix system, two mechanisms of primary communi-
cation exist:

! via anonymous pipe or via named pipe,
! via a structured and ordered list of memory segments
where processes store or retrieve data (named queue
IPC).

There is also the communication of interprocess of a
more sophisticated interprocess, for instance:

! Unix sockets method,
! CORBA (Common Object Request Broker Architec-
ture) technology,

! communication with parallel computing in using, for
example MPI (Message Passing Interface) or PVM (Par-
allel Virtual Machine) libraries (see for example [21]).

These last three high-level technologies are an on-layer
of the communication by pipes.

The queue IPC is also a fast and interesting method, but
it comes with some difficulties and risks: processes are dee-
ply linked by common segments and synchronization
mechanism is needed, which is opposed to the classical
basic rule of encapsulation of data. Nevertheless, we can
notice that these risks can be overcome with no difficulty.

In our case, we suppose only communication using com-
puter memory and no transfers are made with memory
mapped files. Due to the small complexity and dataflow
and to optimize the duration of data transfers we have
adopted the first primary IPC solutions. We use ‘‘named
pipe method” which allows two unrelated processes to
communicate with each other.

Fig. 1. Interface between the two codes ABAQUS and HEREZH++ via the user subroutine material Umat.
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Named pipes are also known as FIFOs (first-in, first-
out) and can be used to establish a one-way (half-duplex)
flow of data. They are identified by their access point,
which is basically in a file kept on the file system. Because
named pipes have the pathname of a file associated with
them, it is possible for unrelated processes to communicate
with each other; in other words, two unrelated processes
can open the file associated with the named pipe and begin
communication. Unlike anonymous pipes, which are pro-
cess-persistent objects, named pipes are file system-persis-
tent objects, that is, they exist beyond the life of the
process. In order to communicate by means of a named
pipe, the processes have to open the file associated with
the named pipe. By opening the file for reading, the process
has access to the reading end of the pipe, and by opening
the file for writing, the process has access to the writing
end of the pipe. A named pipe supports blocked read and
write operations by default: if a process opens the file for
reading, it is blocked until another process opens the file
for writing, and vice versa. This operation is used to simply
synchronize the two processes without calls to the unix sys-
tem of synchronization per flag for example.

As well as considerations of simplicity and efficiency, we
have adopted the named pipe IPC method for the following
reasons:

! Named pipes are very efficient.
! The blocking I/O operation allows simple synchroniza-
tion mechanism.

! Write (using write function call) to a named pipe is guar-
anteed to be atomic.

! Named pipes have permissions (read and write) associ-
ated with them, unlike anonymous pipes. These permis-
sions can be used to enforce secure communication.

But this method also has limitations:

! Named pipes can only be used for communication
among processes on the same host machine.

! Named pipes can be created only in the local file system
of the host, that is, you cannot create a named pipe on
the NFS file system.

! Due to the basic blocking nature of pipes, careful pro-
gramming is required for the client and server, in order
to avoid deadlocks.

! Named pipe data is a byte stream, and no record identi-
fication exists.

4.2. Implementation of the interface

With the named pipe method, several structures have
been implemented. First, a Umat subroutine is developed:
its goal is to transfer information variables to a c/C++ rou-
tine, only by pointer. The interprocess communication by
named pipe is then provided by this c/C++ routine (see
Fig. 2). An ‘‘input named pipe” is used to transfer informa-
tion to Umat (ABAQUS) at HEREZH++ and an ‘‘output
named pipe” for the other way. The information transfer
by named pipe is byte stream tabular.

For each transfer, the objective is to group the whole of
the data so as to limit the number of calls. The parameters
transmitted by Abaqus to the subroutine c/C++ by
addresses can be stored in memory in very different places.
Also, to group them, they are copied in a data structure c/
C++ ‘‘union” which establishes an equivalence between the
arrays of real and integer, and the buffer of bytes (or
characters) transmitted by named pipe.

To optimize the flow of data via named pipe (see
Fig. 3), data structures are divided in the table into three
parts:

! in the front part of the table, there is a zone dedicated to
input data (e.g. tangent modulus ¼ oDr

oDe),
! in the middle of the table, a second zone is dedicated to
input/output data (e.g. stress frðtnÞg and frðtnþ1Þg),

! in the other end, a last zone is dedicated to data input
(e.g. total mechanical strain feðtnÞg and fDeðtnÞg).

Fig. 2. Named pipe between Umat and HEREZH++.
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In input data transfer to HEREZH++, the buffer really
used contains only the last two parts of the table. For the
other way, in output data, the buffer is composed only of
the first two parts. We use the named pipe supports
blocked read and write operations by default: if a process
opens the file for reading, it is blocked until another pro-
cess opens the file for writing, and vice versa.

Appendix shows details about the C functions, used to
interface the FORTRAN subroutine with the named pipes.

The same mechanism of data exchange is employed for
the process HEREZH++. However, the object-oriented
structures strongly typed of HEREZH++ lead to some dif-
ferences. All data structures are encapsulated in a dedi-
cated class, which includes all the methods necessary for
the various operations. In particular, the operations when
HEREZH++ calculates the mechanical behaviour or when
HEREZH++ uses a Umat calculated by another HERE-
ZH++ process, during the deserialisation phase (i.e. trans-
formation of the information read in the pipe towards
information usable by the code), the various data are trans-
formed into instances (objects) of the classes used by
HEREZH++.

Lastly, in our case,HEREZH++must store the data rel-
ative to the behaviour (see Section 5.3.2) for all the integra-
tion points of all the finite elements. This data storage
dynamically increases during calculation which is difficult
to managed with ABAQUS and therefore emphasizes the
interest of the use of an external program for that purpose.

However, at the beginning of calculation, HEREZH++
knows neither the number of elements nor the number of
integration points. The solution adopted to solve this diffi-
culty was to create in HEREZH++ a particular class of
finite elements designed to store the data of all the integra-
tion points of the same element. The geometrical support is
the point. During the first iteration of the first increment,
these elements, points, are built dynamically, as well as
the containers relating to the integration points associated
with them. At the end of this iteration, all points are assem-
bled in a mesh structure which is created at this stage. The

interest of this method is that once the mesh is created, all
the existing mechanisms and operations currently in
HEREZH++ are available for this mesh and the associated
elements, in particular, back-up on hard disk
postprocessing.

We can note, in Fig. 2, that the ABAQUS process, can
be advantageously replaced by a second HEREZH++ pro-
cess during the debug step. Also, let us notice that the Umat
subroutine integrated in ABAQUS is identical for all
behaviour laws and information transfer. In particular,
the introduction of new external behaviour does not
involve any modification on this part.

5. Numerical results and discussion

The quality and the reliability of the implementation of
the interface are assessed here through the resolution of
several test cases. In order to investigate the effect of infor-
mation transfer on the simulation run times, all the numer-
ical test have been run on a Dell Precision Workstation 450
under Linux version 2.6.11.11, Debian 1:3.3.5-8ubuntu2.
This machine has two Intel(R) Xeon(TM) CPU 2.40
GHz processors and 3 GB of memory. All computational
examples are carried out with version 6.5 of the commercial
code ABAQUS [5]. The different components of time, used
during these tests, are defined as follows:

! user time (noted u) refers to the CPU time spent execut-
ing ABAQUS,

! system time (noted s) refers to the amount of OS kernel
CPU time spent by the operating system doing work on
behalf of the ABAQUS process,

! total CPU time (noted t) is the sum of these two
numbers,

! wall clock time (or elapsed time) (noted w) refers to the
actual physical time spent for the analysis process to
complete.

If the analysis job is running on a single CPU, and the
job has exclusive access to that CPU, the difference
between total CPU time and wall clock time is largely the
time taken to perform all I/O requests. If the job is run
across several CPUs, the user time, system time, and total
CPU time reported is the sum across all the CPUs. All the
presented tests are carried out with two CPUs, but we have
observed that the use of a single CPU reduces the compu-
tational time in half. We should also note that we do not
take the pre-compilation time of the Umat in ABAQUS
into account.

5.1. Uniaxial tension of cube with simplified mesh with elastic
behaviour law

For validation purposes, we conducted direct FE com-
putations on an elastic behaviour law, with material
parameters: Young’s modulus E ¼ 1' 1011 MPa and Pois-
son’s ratio m ¼ 0:3. This law is the simplest and least

Fig. 3. Dataflow distribution in structure c/C++.
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expensive in computational time. The goal of these tests is
to estimate the CPU additional time produced by the code
coupling. Three cases are compared:

! intern elastic’s law of ABAQUS (referred as Abq),
! elastic’s law with FORTRAN77’s Umat in ABAQUS
(referred as Umat),

! elastic’s law with the interface procedure proposed in
this paper (referred as Abq-Hz++).

This test is a case of homogeneous deformation of a
cube of unit dimension. This is a static non-linear analysis
consisting of a cube in uniaxial tension. The cube is meshed
with only one 8-node brick element of type C3D8. The pre-
scribed displacement is 0.01 mm with isostatic boundary
conditions. The computation is performed with 200 fixed
of 0.005 time increments. Due to the small displacement,
the global problem is mainly linear, but we have enforced
a non-linear execution with small steps to obtain an overall
CPU time not too small. So, at each step, only one iteration
suffices to converge. Thereby, in a total account, the 200
imposed steps, lead to nearly the same global number of
iterations: 202.

The results obtained with the model that uses the Umat
user subroutine and the interface between HEREZH++
and ABAQUS (Abq-Hz++) are identical to those obtained
using the built-in ABAQUS material model. We verify that
the convergence is identical between the three cases. The
details of analysis time obtained for the three cases are
described in Table 2.

For this one element test, we can notice that the compu-
tational time is very similar for the three cases.

5.2. Uniaxial tension of cube with more and more refined
mesh and elastic behaviour law

This second test is the same as the previous test but in
this case the non-linear simulation is made with 100 incre-
ments of 0.01. To show the evolution of the CPU time in
function of the number of degrees of freedom, we use a
more and more refined mesh (elements of type C3D8 (see
Fig. 4)) as follows:

! mesh with 1' 1' 1 elements (one-element widthwise,
one in height and one in thickness) which includes 24
degrees of freedom (DOF),

! mesh with 2' 2' 2 elements: 81 DOF ,
! mesh with 5' 5' 5 elements: 648 DOF ,

! mesh with 20' 20' 20 elements: 27,783 DOF
! mesh with 30' 30' 30 elements: 89,373 DOF.

Now, to evaluate the time for information transfer, we
use a particular behaviour law in HEREZH++ with any
value calculated but we use the Umat in elasticity. In this
case, calculations between Umat and Abq-Hz++ are identi-
cal, only the time to IPC and transformations by HERE-
ZH++ are added. All the analysis time for the five
meshes are listed in the Table 3.

With the 20' 20' 20 elements (see Table 3 and Fig. 5),
the total time of Umat is 1712 s, the transfer time is then:
4433 ( 1712 = 2721 s. The user and system times, used
by HEREZH++ processor, give 1568 s and 1437 s respec-
tively which gives total time near 3005 s. The calculated
total time is then of 1712 + 2721 + 3005 = 7438 s which
seems coherent with the time given by Abq-Hz++ of
7174 s. The computational time 7174 ( 1712 = 5462 s is
near factor 3 ’ 5462=1712 between Umat and Abq-
Hz++ which is reasonably good. Fig. 6 shows the evolution
of wall clock time in function of the number of degrees of
freedom.

5.3. Analysis of an automotive boot seal

This industrial test is provided in the documentation of
ABAQUS [5]. Boot seals are used to protect constant veloc-
ity joints and steering mechanisms in automobiles. These
flexible components must accommodate the motions asso-
ciated with the angulation of the steering mechanism. Some
parts of the boot seal are in constant contact with an inter-
nal metal shaft, while other areas come into contact with

Table 2
Computational time (in s) for uniaxial tension with only one element and
elastic’s law

u s t w

Abq 4.92 1.91 6.83 7
Umat 5.13 1.81 6.94 7
Abq-Hz++ 5.50 2.30 7.8 8

Fig. 4. Initial and deformed mesh of 5' 5' 5 elements C3D8 for cube in
tension with elastic law (amplification factor of 10).
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the metal shaft during angulation. In addition, the boot
seal may also come into contact with itself, both internally

and externally. The contacting regions affect its perfor-
mance and longevity.

5.3.1. Geometry, model, and loading
In this example the deformation of the boot seal,

caused by a typical angular movement of the shaft, is
studied. The boot seal with the internal shaft is shown
in Fig. 7. The corrugated shape of the boot seal tightly
grips the steering shaft at one end, while the other end
is fixed. The rubber seal is modeled with first-order, hybrid
brick elements with two elements through the thickness
using symmetric model generation. The seal has a non-
uniform thickness varying from a minimum of 3.0 mm
to a maximum of 4.75 mm at the fixed end. The number
of elements is 8713 and 19,230 nodes with 35,010 degrees
of freedom.

The internal shaft is considered to be rigid and is mod-
eled as an analytical rigid surface; the radius of the shaft is
14 mm. The rigid body reference node is located precisely
in the center of the constant velocity joint. Contact is

Table 3
Computational time (in s) for uniaxial tension of cube with elastic’s law in function of mesh

Mesh DOF u s t w % CPU

1' 1' 1 24 Abq 2.51 0.88 3.39 3 88.7
Umat 2.61 1.06 3.67 5 63
Abq-Hz++ 2.77 0.98 3.75 6 55

2' 2' 2 81 Abq 3.23 0.95 4.18 4 89.6
Umat 3.57 1.13 4.70 5 86.4
Abq-Hz++ 4.09 1.62 5.71 9 65

5' 5' 5 648 Abq 13.07 1.48 14.55 16 88.2
Umat 16.07 1.59 17.66 19 92
Abq-Hz++ 16.88 9.95 26.83 39 67

20' 20' 20 27,783 Abq 1497.1 105.14 1602.2 4392 36.5
Umat 1599.5 113.37 1712 4801 35.8
Abq-Hz++ 3120.5 1312.5 4433 7174 61

30' 30' 30 89,373 Abq 9491.9 640.84 10,133 25,715 39.2
Umat 9770. 699.84 10,470 27,164 38.3
Abq-Hz++ 16,322 5526.0 21,848 35,047 62.3

Fig. 5. Evolution of time during the information transfer for 20' 20' 20 elements.

 0

5000

10000

15000

20000

25000

30000

35000

40000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

W
al

lc
lo

ck
 ti

m
e 

(i
n 

se
co

nd
s)

 

Number of degrees of freedom

Abq
Umat

Abq−Hz++

Fig. 6. Evolution of computational time for uniaxial tension test in
function of DOF.

G. Rio et al. / Advances in Engineering Software 39 (2008) 1010–1022 1017



specified between the rigid shaft and the inner surface of
the seal. Self-contact is specified on the inner and outer sur-
faces of the seal.

The inner radius at the neck of the boot seal is smaller
than the radius of the shaft so as to provide a tight fit
between the seal and the shaft. In the first step the initial
interference fit is resolved, corresponding to the assembly
process of mounting the boot seal onto the shaft. The sec-
ond step simulates the angulation of the shaft by specifying
a finite rotation of 12" at the rigid body reference node of
the shaft. During the third step, the angulated shaft travels
of 12" in the opposite direction. These three steps give non-
radial loading.

5.3.2. Elasto–visco-hysteresis behaviour law
To show the interest of this code coupling in the intro-

duction of a new constitutive model in ABAQUS’s code,
the rubber is modeled with an original behaviour law,
named elasto–visco-hysteresis law.

In general, the theory of elasto–visco-plasticity takes
into consideration the rate-dependent material behaviour
with equilibrium hysteresis and incorporates all macro-
scopically observable phenomena. The present model of
elasto–visco-hysteresis uses a different approach. Instead
of using a partition of the strain, a superposition of stress
contributions is performed. This has already been used suc-
cessfully in the elasto-hysteresis model [16,17] for modeling
the behaviour of shape memory alloys, the ferroelectrical
and ferromagnetical materials [22] and the PA66 solid
polymer [23].

According to Guélin [18], the elasto–visco-hysteresis
model is based on the superposition of hyperelastic re, vis-
cous stress rv (with two Maxwell branches) and pure hys-
teresis rh contributions. The superposition of stresses
states that the Cauchy stress tensor r is expressed from
the decomposition given by the relation:

r ¼ re þ rv þ rh ð1Þ

The first two contribution behaviours are classical. For the
original hysteresis behaviour, we shall refer to Guélin [18]
for more information.

The integration of the constitutive equation:

_S ¼ 2l!Dþ bUðDt
rS;

!DÞDt
rS ð2Þ

describes the implicit evolution of the deviatoric stress ten-
sor S in function of the deviatoric strain-rate tensor !D, the
finite variation of deviatoric stress Dt

rS between a reference
time r and the current time t, the non-reversible intrinsic
dissipated rate U function of S and !D and two material
parameters l and b.

A numerical algorithm is defined for the management of
reference points of space stress tensor. The management of
these inversion and crossing points is carried out using the
intrinsic dissipation rate function U previously defined.
These points are discrete ‘‘memorization” of the loading
path, which can be different in each material point of the
structure. The hysteresis behaviour defined here is close
to the behaviour of hardening plastic.

One of the difficulties introduced by the hysteresis is
then the management and the dynamic increasing in the
data storage for the stress tensors. The developed solution
uses the doubly linked list containers of the ‘‘Standard
Template Library” associated with C++. The use of
abstract class of tensors also allows for a simple transposi-
tion of the analytical expressions towards the data-process-
ing coding.

The material parameters used in this study are:

! Mooney–Rivlin’s hyperelastic parameters:

C01 ¼ 0:05MPa; C10 ¼ 0:474 MPa and K ¼ 17 MPa

! viscoelastic parameters with two Maxwell contributions
(a dashpot and a spring in series):
– E ¼ 0:7 MPa; m ¼ 0:3 and l ¼ 23:4 MPa s
– E ¼ 0:6' 10(1 MPa; m ¼ 0:3 and l ¼ 104:6 MPa s

Fig. 7. Undeformed model of bootseal.
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! hysteretic parameters:

np ¼ 0:9; l ¼ 0:6' 10(2 MPa and Q0 ¼ 39 MPa

5.3.3. Results
With interface between ABAQUS andHEREZH++ and

elasto–visco-hysteresis behaviour law, we obtained the con-
tours of maximum principal stresses in the bootseal accord-
ing to Fig. 8. The rotation of the shaft causes the stretching
of one side and compression on the other side of the boot
seal. The surfaces have come into self-contact on the com-
pressed side. Comparison of the analysis times gives a total
time of 15,339 s with 14,116 s for computational time for
behaviour law by HEREZH++. The transfer time is near
270 s which shows that in this test, it is the elasto–visco-
hysteretic behaviour law which takes more time.

6. Conclusion

In this paper, we have proposed a technique to couple
an object-oriented ‘‘in-house” finite element code HERE-
ZH++, with a commercial software ABAQUS via the
user-defined mechanical material behaviour (Umat). The
proposed code coupling is composed by named pipes inter-
process communication and c/C++ interface procedure.
We have shown in several tests that this code coupling

has some advantages for the development of mechanical
behaviour law but also some limitations, due to the time
to execute the transfer of informations between the two
codes. On an industrial test, we have used a new behaviour
law named elasto–visco-hysteresis which needs large mem-
ory data. This test demonstrates the accuracy, reliability
and efficiency of this code coupling which can be use in
an industrial framework.

We can note that this methodology is quite general, and
could be used, to connect an academic tool to any commer-
cial software, which includes the possibility of implement-
ing a user-defined material model. The academic tool can
use any language, provided that a call to the C functions
can be done. It is the case of the majority of the modern
platforms for the numerical developments.
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Appendix. Details of the C functions used for the
communication by named pipes

See Tables A1–A4.

Table A1
C upper functions call for input and output operation with the named pipes

/*include of the header’s*/
#include hsys/types.hi
#include hsys/stat.hi
#include hctype.hi
#include hstdio.hi
#include hsys/fcntl.hi

(continued on next page)

Fig. 8. Deformed configuration of half the model and contours of maximum principal stress in the seal.
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Table A2
Definition of the global variables

/*======definition of global variables========*/
/*definition of a union structure
which links arrays data of char, double and int*/
union Tab_car_double_int

{char tampon[928]; double x[116]; int n[232];};
Tab_car_double_int t_car_x_n;/* buffer container for input–output */
char* envoi = "../Umat_envoi_Hz";/*named pipe for sending data*/
char* reception = "../Umat_reception_Hz";/*named pipe for getting data*/

/*—links between the buffer memory and
of the more comprehensible variables*/

/*—only used in output*/
double*u_herezh_DDSDDT = &t_car_x_n.x[0];
double*u_herezh_DRPLDE = &t_car_x_n.x[6];
double*u_herezh_DDSDDE = &t_car_x_n.x[12];

/*—used in input and output */
double*u_herezh_RPL = &t_car_x_n.x[48];
double*u_herezh_STRESS = &t_car_x_n.x[49];
double*u_herezh_SSE = &t_car_x_n.x[55];
double*u_herezh_SPD = &t_car_x_n.x[56];
double*u_herezh_SCD = &t_car_x_n.x[57];
double*u_herezh_DRPLDT = &t_car_x_n.x[58];
double*u_herezh_PNEWDT = &t_car_x_n.x[59];

/*—only used in input */
double* u_herezh_STRAN = &t_car_x_n.x[60];
double* u_herezh_DSTRAN = &t_car_x_n.x[66];
double* u_herezh_TIME = &t_car_x_n.x[72];
double* u_herezh_DTIME = &t_car_x_n.x[74];
double* u_herezh_TEMP = &t_car_x_n.x[75];
double* u_herezh_DTEMP = &t_car_x_n.x[76];
double* u_herezh_COORDS = &t_car_x_n.x[77];
double* u_herezh_DROT = &t_car_x_n.x[80];
double* u_herezh_CELENT = &t_car_x_n.x[89];
double* u_herezh_DFGRD0 = &t_car_x_n.x[90];
double* u_herezh_DFGRD1 = &t_car_x_n.x[99];
int*u_herezh_NDI = &t_car_x_n.n[216];
int*u_herezh_NSHR = &t_car_x_n.n[217];
int*u_herezh_NTENS = &t_car_x_n.n[218];

Table A1 (continued)

#include hunistd.hi
extern ‘‘C"
/*————————————————————————————————————————————*/
void appelc_(
double* STRESS,double* DDSDDE,double* SSE,double* SPD,double* SCD,
double* RPL,double* DDSDDT,double* DRPLDE,double* DRPLDT,double* STRAN,
double* DSTRAN,double* TIME,double* DTIME,double* TEMP,double* DTEMP,
char* CMNAME,int* NDI,int* NSHR,int* NTENS,int* NSTATV,double* PROPS,
int* NPROPS,double* COORDS,double* DROT,double* PNEWDT,double* CELENT,
double* DFGRD0,double* DFGRD1,int* NOEL,int* NPT,int* LAYER,int* KSPT,
int* KSTEP,int* KINC)
{
/*————————————————————————————————————————————*/
/* C function for sending data in the pipe */
/*————————————————————————————————————————————*/
EcritureDonneesUmat(STRESS,SSE,SPD,SCD,STRAN,DSTRAN,TIME,DTIME,TEMP
,DTEMP,CMNAME,NDI,NSHR,NTENS,NSTATV,COORDS,DROT,PNEWDT,CELENT
,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC);
/*————————————————————————————————————————————*/
/* C function for reading data in the pipe */
/*————————————————————————————————————————————*/
LectureDonneesUmat(STRESS,DDSDDE,SSE,SPD,SCD,NDI,NSHR,NTENS,PNEWDT
,RPL,DDSDDT,DRPLDE,DRPLDT);
}
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Table A4
C function for sending data in the pipe

/*function for sending data in the pipe*/
void EcritureDonneesUmat

(double* STRESS,double* SSE,double* SPD,double* SCD
,const double* STRAN,const double* DSTRAN,const double* TIME
,const double* DTIME,const double* TEMP,const double* DTEMP
,const char* CMNAME,const int* NDI,const int* NSHR,const int* NTENS
,const int* NSTATV,const double* COORDS,const double* DROT
,double* PNEWDT,const double* CELENT,const double* DFGRD0
,const double* DFGRD1,const int* NOEL,const int* NPT
,const int* LAYER,const int* KSPT,const int* KSTEP,const int* KINC)

{int tab;
/* transfert between the buffer and the function parameters */
int ij;
for (ij = 0; ij < 6; ij++)

{u_herezh_STRESS[ij] = STRESS[ij]; u_herezh_STRAN[ij] = STRAN[ij];
u_herezh_DSTRAN[ij] = DSTRAN[ij];};

*u_herezh_SSE = *SSE; *u_herezh_SPD = *SPD; *u_herezh_SCD = *SCD;
*u_herezh_PNEWDT = *PNEWDT;
*u_herezh_TIME[0] = TIME[0]; u_herezh_TIME[1] = TIME[1];
*u_herezh_DTIME = *DTIME;
*u_herezh_DTEMP = *DTEMP;
*u_herezh_NDI = *NDI;
*u_herezh_NSHR = *NSHR;
*u_herezh_NTENS = *NTENS;
*u_herezh_NSTATV = *NSTATV;
int i;

(continued on next page)

Table A3
C function for reading data in the pipe

/*function for reading data in the pipe*/
void LectureDonneesUmat(double* STRESS,double* DDSDDE,double* SSE

,double* SPD,double* SCD,const int* NDI,const int* NSHR
,const int* NTENS,double* PNEWDT,double* RPL,double* DDSDDT
,double* DRPLDE,double* DRPLDT)
{int tub; tub = open(envoi,O_RDONLY);/* open the pipe for reading */
/* read in the pipe and put in the lower part of the buffer */
read (tub,t_car_x_n.tampon,480);
close (tub);/* close the connection to the pipe */
/* transfert between the function parameters and the buffer */
int ij;
for (ij = 0; ij < 6; ij++)

{STRESS[ij] = u_herezh_STRESS[ij]; DDSDDT[ij] = u_herezh_DDSDDT[ij];
DRPLDE[ij] = u_herezh_DRPLDE[ij];
int kl;
for (kl = 0; kl < 6; kl++)
int r = ij*6 + kl; DDSDDE[r] = u_herezh_DDSDDE[r];

}
*SSE = *u_herezh_SSE; *SPD = *u_herezh_SPD; *SCD = *u_herezh_SCD;
*PNEWDT = *u_herezh_PNEWDT; *RPL = *u_herezh_RPL;
*DRPLDT = *u_herezh_DRPLDT;
};

Table A2 (continued)

int*u_herezh_NSTATV = &t_car_x_n.n[219];
int*u_herezh_NOEL = &t_car_x_n.n[220];
int*u_herezh_NPT = &t_car_x_n.n[221];
int*u_herezh_LAYER = &t_car_x_n.n[222];
int*u_herezh_KSPT = &t_car_x_n.n[223];
int*u_herezh_KSTEP = &t_car_x_n.n[224];
int*u_herezh_KINC = &t_car_x_n.n[225];
char*u_herezh_CMNAME = &t_car_x_n.tampon[904];
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Oyahon, R. (editors). Conférence calcul des structures et intelligence
artificielle, vol. 2. 1988.

[8] Besson J, Foerch R. Large scale object-oriented finite element code
design. Comput Methods Appl Mech Eng 1997;142(1–2):165–87.
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Théorique et Appliquée 1980;19(2):217–45.

[19] Stroustrup B. The C++ programming language. Mass: Addison-
Wesley; 1986.

[20] Immich PK, Bhagavatula RS, Pendse R. Performance analysis of five
interprocess communication mechanisms across unix operating sys-
tems. J Syst Software 2003;68(1):27–43.

[21] Pantale O. Parallelization of an object-oriented fem dynamics code:
influence of the strategies on the speedup. Adv Eng Software
2005;36(6):361–73.
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Table A4 (continued)

for (i = 0; i < 3; i++)
{u_herezh_COORDS[i] = COORDS[i];
int j;
for (j = 0; j < 3; j++)
{int r = i * 3 + j;
u_herezh_DROT[r] = DROT[r]; u_herezh_DFGRD0[r] = DFGRD0[r];
u_herezh_DFGRD1[r] = DFGRD1[r];
}

};
*u_herezh_CELENT = *CELENT;
*u_herezh_NOEL = *NOEL; *u_herezh_NPT = *NPT;
*u_herezh_LAYER = *LAYER; *u_herezh_KSPT = *KSPT;
*u_herezh_KSTEP = *KSTEP; u_herezh_KINC = *KINC;
for (i = 0; i < 19; i++)

{if (CMNAME[i] !=’’) u_herezh_CMNAME[i] = CMNAME[i];
else {u_herezh_CMNAME[i] = ’n0’;};
};

int tub = open(reception,O_WRONLY);/* open the pipe for sending */
char* tampon_envoi = &(t_car_x_n.tampon[384]);
/* put the higher part of the buffer in the pipe */
write (tub,tampon_envoi,544);
close (tub);/* close the connection to the pipe. */
return;

};
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